

Southeast Europe Journal of Soft Computing

Available online:

VOL9 NO.

Implementation Of Long Short

Based On Keystroke Dynamics

Admir Ferhatovic1*, Ali Abd Almisreb1

1
Faculty of Engineering and Natural Sciences, International University of Sarajevo

HrasnickaCesta 15, Ilidža 71210 Sarajevo, Bosnia and Herzegovina

2Department of Computer Science & Software Engineering

University.
3
School of Computing and Creative Media

admir.ferhatovic@gmail.com

Article Info

Article history:

Article received on 10 January 2020

Received in revised form 1 February2020

Keywords:

LSTM, AI, Biometric, Keystroke

dynamic

1. INTRODUCTION

In this paper I want to provide a clear overview of a

keystroke dynamics classifier implementation using long

short-term-memory layers and present an idea about how

many test samples per person are needed for a secure and

maintainable system [1]. This way I want to encourage the

usage of keystroke dynamics as an authentication system in

everyday applications [2], not to replace the simple

password system, but to act as a support for it, this way

maintaining a high level of security without needing the user

to take additional actions which distract him from his

everyday tasks [3]. Whether an authentication system should

use only keystroke dynamics on its own, will be discusse

Southeast Europe Journal of Soft Computing

Available online: http://scjournal.ius.edu.ba

NO.1 March 2020 - ISSN 2233 – 1859

Implementation Of Long Short-Term Memory (LSTM) For User Authentication

Based On Keystroke Dynamics

1, Sherzod Turaev2, Mohammed A. Saleh3

Faculty of Engineering and Natural Sciences, International University of Sarajevo International University of Sarajevo,

HrasnickaCesta 15, Ilidža 71210 Sarajevo, Bosnia and Herzegovina.

Department of Computer Science & Software Engineering, College of Information Technology,

School of Computing and Creative Media, University College of Technology Sarawak, Sarawak, Malaysia

ABSTRACT: The paper reviews the usage, development and

keystroke dynamics as a viable authentication system. AI methods are

advancing, but we are still lacking biometric authentication systems in modern

software which is being used daily. This paper shows the usage of long short

term memory layers for solving problems like keystroke dynamics and

efficiently shows that with modern hardware, training and maintaining a small

model is not taxing on the resources, as it may have been.

In this paper I want to provide a clear overview of a

keystroke dynamics classifier implementation using long-

memory layers and present an idea about how

many test samples per person are needed for a secure and

. This way I want to encourage the

usage of keystroke dynamics as an authentication system in

, not to replace the simple

password system, but to act as a support for it, this way

ining a high level of security without needing the user

to take additional actions which distract him from his

. Whether an authentication system should

use only keystroke dynamics on its own, will be discussed

later in this paper, after we see the potential accuracy of

such a system. One of the more common malware types that

casual users get infected are keyloggers

password is compromised using a keylogger, the attacker

will either use it directly and type it or get an authentication

token using a request to an authentication service if it exists.

Either way, if the service required a typing rhythm vector

along the password, the account would be secured from this

kind of attacker [5]. One could argue, if the keylogger

records all keys typed, it could also record the typing

rhythm. That is right, but it is not common and tedious work

for the attacker, and this method would certainly make it

harder to steal accounts on a large scale

Term Memory (LSTM) For User Authentication

International University of Sarajevo,

, United Arab Emirates

, Sarawak, Malaysia

The paper reviews the usage, development and implementation of

keystroke dynamics as a viable authentication system. AI methods are

advancing, but we are still lacking biometric authentication systems in modern

software which is being used daily. This paper shows the usage of long short-

ayers for solving problems like keystroke dynamics and

efficiently shows that with modern hardware, training and maintaining a small

model is not taxing on the resources, as it may have been.

later in this paper, after we see the potential accuracy of

such a system. One of the more common malware types that

casual users get infected are keyloggers [4]. Once a

password is compromised using a keylogger, the attacker

ill either use it directly and type it or get an authentication

token using a request to an authentication service if it exists.

Either way, if the service required a typing rhythm vector

along the password, the account would be secured from this

. One could argue, if the keylogger

records all keys typed, it could also record the typing

rhythm. That is right, but it is not common and tedious work

for the attacker, and this method would certainly make it

r to steal accounts on a large scale [6].

38Admir Ferhatovicet al/ Southeast Europe Journal of Soft Computing Vol.

Another use case of keystroke recognition is to protect

policies from services which forbid account sharing

Account sharing has been an issue for some time now, and

nothing has been done to try to counter it. Having users

typing rhythms would finally help detect if an account is

being shared and therefore help recognize if a policy is

being broken. For this purpose, a publicly available dataset

was used which contains 400 samples of time series vectors

for 51 users [8].

II LITERATURE REVIEW

Most literature regarding the topic keystroke dynamics does

not concern itself with the methods and techniques to

implement such a system, but more with the necessary proof

that keystroke dynamics is a valid biometric system that can

stand its ground. In [2], it is argued that a typing rhythm is a

behavioral trait instead of being a physiological

characteristic, making it suitable as a biometric method. In

[9], results from experiments have been reported that

support the idea of typing rhythm being a unique behavioral

pattern for every individual, as several tests have been

performed and the results were promising. After analyzing

the data that they collected, they reported a false alarm rate

of only 5.5%, which is astonishing given the fact that these

experiments have been performed in 1980. Other literature

such as [10], concerns itself more with data acquisition and

the advantages of keystroke dynamics in that regard. Their

main argument for supporting keystroke dynamics as a

biometric system is that data can be collected without the

user being aware or having to perform anything. As users

are typing, which is the main activity for most people that

use a computer, their keystroke timings can be automatically

recorded. Whilst, the paper [11] argues the viability of using

keystroke dynamics as a system of authentication on its own

versus using it only for additional verification. The main

concern of this paper is providing proof of a viable neural

network approach and its example usage in practice. In [1],

it is stated that the main weakness of such an approach is

having to retrain the network when a new user is added, but

I want to show that this is not a huge burden anymore and

can be easily overcome with modern technology and smart

methods.

III DATASET

As proposed, the most suitable way to represent a typing

rhythm for a given person would be a, so called time series.

A time series is simply put, a vector containing time

measurements of certain actions. In the case of keystroke

dynamics, the possible actions can be broken down into key

presses, and smaller components of key presses, and

transition times between these components.

Basically, all these actions have some latency between them.

A latency from action A to action B, therefore. Therefore,

Europe Journal of Soft Computing Vol.9 No.1 March 2020 (37-41)

Another use case of keystroke recognition is to protect

policies from services which forbid account sharing [7].

time now, and

nothing has been done to try to counter it. Having users

typing rhythms would finally help detect if an account is

being shared and therefore help recognize if a policy is

being broken. For this purpose, a publicly available dataset

which contains 400 samples of time series vectors

Most literature regarding the topic keystroke dynamics does

not concern itself with the methods and techniques to

m, but more with the necessary proof

that keystroke dynamics is a valid biometric system that can

, it is argued that a typing rhythm is a

behavioral trait instead of being a physiological

making it suitable as a biometric method. In

, results from experiments have been reported that

support the idea of typing rhythm being a unique behavioral

pattern for every individual, as several tests have been

nd the results were promising. After analyzing

the data that they collected, they reported a false alarm rate

of only 5.5%, which is astonishing given the fact that these

experiments have been performed in 1980. Other literature

, concerns itself more with data acquisition and

the advantages of keystroke dynamics in that regard. Their

main argument for supporting keystroke dynamics as a

biometric system is that data can be collected without the

m anything. As users

are typing, which is the main activity for most people that

use a computer, their keystroke timings can be automatically

argues the viability of using

system of authentication on its own

versus using it only for additional verification. The main

concern of this paper is providing proof of a viable neural

network approach and its example usage in practice. In [1],

ch an approach is

having to retrain the network when a new user is added, but

I want to show that this is not a huge burden anymore and

can be easily overcome with modern technology and smart

resent a typing

rhythm for a given person would be a, so called time series.

A time series is simply put, a vector containing time

measurements of certain actions. In the case of keystroke

dynamics, the possible actions can be broken down into key

and smaller components of key presses, and

Basically, all these actions have some latency between them.

A latency from action A to action B, therefore. Therefore,

we can mark these latency using letters correspon

actions, in this example A and B, to form a digraph AB.

Having a classification of possible actions into digraphs

makes our work easier when recording and reading latencies

from existing datasets.

In most research the following actions are differe

with their corresponding digraph symbols. We have the

Key-Up timing (KU) which represents the time a key is

being released and we have Key-Down timing (

represents the time a key is being pressed. Next is

Hold/Dwell time (HT) which represe

key release and a new key press. These are the at least

necessary latencies. We can also derive other latencies from

these such as Press-Press (PP) time between two key

presses, Release-Release (RR) time between two key

releases and Release-Press (RP) the time between the last

key release and new key press.

Now that we cleared that our input is in the form of a simple

vector containing floating point numbers, let us talk about its

use in neural networks and its difficulties. Having a ve

as input is probably the dream of anyone who ever put their

hands onto data science. It is the lowest level and purest

form an input can have. Usually, the hardest part is

transforming your input into an input that resembles

numbers, but here we already have that. Here it is clear, that

keystroke dynamics as a form of biometrics is perfectly

suited as a problem which can be solved using AI methods,

ranging from techniques like SVMs to neural networks.

Now, the only shortcoming is that depending on the

password or text that users write the input vector is

obviously different in length. But this is only a mild problem

because there are simple techniques to overcome it like

zero-padding, RNN layers and recursive NNs.

The dataset used throughout this paper

https://www.cs.cmu.edu/~keystroke/

subjects with 400 time series per subject. All subjects used

the same password (.tie5Roanl). For each key

timing is recorded in seconds. Also, for each key transition

two times are recorded, the keydown

keyup-keydown time. Each record also has a session index

which differentiates during which session a record was

made. So, in total there are 31 input attributes and 51

possible outputs.

Figure 1: Example of dataset records

In Fig 1. we can see different records containing the subject

number, the session number, the repetition number and

digraphs for Hold Time (H) of period (.), Key

of period, Key-Up (UD) of period and Hold, Down time of

T (t).

we can mark these latency using letters corresponding to

actions, in this example A and B, to form a digraph AB.

Having a classification of possible actions into digraphs

makes our work easier when recording and reading latencies

In most research the following actions are differentiated

with their corresponding digraph symbols. We have the

) which represents the time a key is

Down timing (KD) which

represents the time a key is being pressed. Next is

) which represents the time between

key release and a new key press. These are the at least

necessary latencies. We can also derive other latencies from

) time between two key

) time between two key

) the time between the last

Now that we cleared that our input is in the form of a simple

vector containing floating point numbers, let us talk about its

use in neural networks and its difficulties. Having a vector

as input is probably the dream of anyone who ever put their

hands onto data science. It is the lowest level and purest

form an input can have. Usually, the hardest part is

transforming your input into an input that resembles

dy have that. Here it is clear, that

keystroke dynamics as a form of biometrics is perfectly

suited as a problem which can be solved using AI methods,

ranging from techniques like SVMs to neural networks.

Now, the only shortcoming is that depending on the

password or text that users write the input vector is

obviously different in length. But this is only a mild problem

because there are simple techniques to overcome it like

padding, RNN layers and recursive NNs.

The dataset used throughout this paper is taken from

https://www.cs.cmu.edu/~keystroke/[8]. It contains 51

subjects with 400 time series per subject. All subjects used

). For each key pressed a

timing is recorded in seconds. Also, for each key transition

two times are recorded, the keydown-keydown time and the

keydown time. Each record also has a session index

which differentiates during which session a record was

al there are 31 input attributes and 51

Example of dataset records

In Fig 1. we can see different records containing the subject

number, the session number, the repetition number and

) of period (.), Key-Down (DD)

) of period and Hold, Down time of

39Admir Ferhatovicet al/ Southeast Europe Journal of Soft Computing Vol.

IV METHODS

There exists a variety of methods that can be used to

implement classification of users through typing rhythms.

One of the more successful ones is the usage of a Support

Vector Machine, as in [4]. But the obvious shortcoming is

that given N users, you need N support vectors to classify

each time series. I am in favor of using neural networks, but

as mentioned before neural networks also have a similar

shortcoming. Once you train your neural network for a fixed

number of possible users (possible outputs), you need to

retrain it once another user is added. In this paper, I want to

show that this is nothing, but a small hindrance with modern

hardware and a creative approach, but first let us talk about

the obvious advantage of neural networks in comparison to

SVMs, neural networks have a fixed sized input, therefore

they scale better.

They scale better only if you keep being smart about it.

Adding users adds also outputs to the neural network, which

increases the training cost, it takes longer to train it to a high

percentage accuracy. Ironically, the idea to handle this

comes as an analogy from SVMs. With SVM you keep

adding support vectors for each possible class, in our case

each new user.

To leverage the advantage of a neural network, the idea is to

separate users into clusters of some fixed size and have a

separate neural network for each cluster. The cluster size

should be determined by the cost needed of retraining. One

could say a compromise. But, after a cluster is full of users,

it never needs to be retrained again and is in its final form,

as each new user will be assigned to a cluster that has not

reached its maximum size. In the use case of authentication,

what allows for this to be efficient, is the fact that at user

authentication we know beforehand as which user the person

is authenticating so we can select the appropriate cluster and

determine if the user is the user or is an imposter. Of course,

we would like to know who the imposter is, but in case of

authentication it is not a priority and can be determined at a

later point, after the input is ran through all clusters. And of

course, with more powerful resources, recognizing a person

by keystroke dynamics is not a problem for a clustered

system as the input can be ran concurrently through all

clusters.

Now as for the details of what type of neural network and

what layers to use.For a problem where the input i

format of a time-series vector, using a Long short

Memory model comes as a natural choice. [12]

part is to determine the number of layers and memory cells

per layer in our model. Considering our small sam

we need to constrict ourselves to as few layers as possible.

In the model I implemented I used one LSTM layer for

input, two LSTM layers as hidden layers and a dense 51

output layer. After testing, 100 memory cells per LSTM

layer seems optimal for our sample size. The number 100 is

calculated using a formula found in [13]. The model can be

seen in Fig 2.

Europe Journal of Soft Computing Vol.9 No.1 March 2020 (37-41)

There exists a variety of methods that can be used to

implement classification of users through typing rhythms.

is the usage of a Support

. But the obvious shortcoming is

that given N users, you need N support vectors to classify

each time series. I am in favor of using neural networks, but

ral networks also have a similar

shortcoming. Once you train your neural network for a fixed

number of possible users (possible outputs), you need to

retrain it once another user is added. In this paper, I want to

drance with modern

hardware and a creative approach, but first let us talk about

the obvious advantage of neural networks in comparison to

SVMs, neural networks have a fixed sized input, therefore

g smart about it.

Adding users adds also outputs to the neural network, which

increases the training cost, it takes longer to train it to a high

percentage accuracy. Ironically, the idea to handle this

comes as an analogy from SVMs. With SVM you keep

g support vectors for each possible class, in our case

To leverage the advantage of a neural network, the idea is to

separate users into clusters of some fixed size and have a

separate neural network for each cluster. The cluster size

d be determined by the cost needed of retraining. One

could say a compromise. But, after a cluster is full of users,

it never needs to be retrained again and is in its final form,

as each new user will be assigned to a cluster that has not

mum size. In the use case of authentication,

what allows for this to be efficient, is the fact that at user

authentication we know beforehand as which user the person

is authenticating so we can select the appropriate cluster and

he user or is an imposter. Of course,

we would like to know who the imposter is, but in case of

authentication it is not a priority and can be determined at a

later point, after the input is ran through all clusters. And of

rces, recognizing a person

by keystroke dynamics is not a problem for a clustered

system as the input can be ran concurrently through all

Now as for the details of what type of neural network and

what layers to use.For a problem where the input is in the

series vector, using a Long short-term

[12] The hard

part is to determine the number of layers and memory cells

per layer in our model. Considering our small sample size,

we need to constrict ourselves to as few layers as possible.

In the model I implemented I used one LSTM layer for

input, two LSTM layers as hidden layers and a dense 51

output layer. After testing, 100 memory cells per LSTM

r our sample size. The number 100 is

. The model can be

Figure 2: Visual representation of the model

V RESULTS

Let us talk about the goals of the tests and the hardware used

for training. The goal of the tests is to show that it is not

expensive anymore to train and retrain neural network

models. When I say expensive, I am talking about the

computational cost and the most important cost of all which

is time needed to retrain a model.

Showing this, I hope to make usage of such models a routine

in software development. Now about the other important

cost, which is hardware. I did the training on a Nvidia GTX

1050ti1. For those unaccustomed with graphics card, this is a

graphics card in the lower end of the user spectrum and

therefore cheap, but still powerful enough for tasks such as

e-sports oriented gaming and as we will see training of

simpler neural network models. It allows us to train the

model with a batch size of 2996, which is impressive for a

cheaper graphics card.

For test, we implemented the model and ran the training

using Keras[14], which is a deep learning library for python

running on TensforFlow [15]. [1] We ran the training with

different numbers of epochs in different instances on

purpose, as to see how similar the results

process are between the same number of epochs. We started

out with 500 epochs and the results can be seen in

1
 Nvidia GTX 1050ti

https://www.geforce.com/hardware/desktop

1050-ti/specifications

Visual representation of the model

Let us talk about the goals of the tests and the hardware used

The goal of the tests is to show that it is not

expensive anymore to train and retrain neural network

models. When I say expensive, I am talking about the

he most important cost of all which

Showing this, I hope to make usage of such models a routine

in software development. Now about the other important

cost, which is hardware. I did the training on a Nvidia GTX

For those unaccustomed with graphics card, this is a

graphics card in the lower end of the user spectrum and

therefore cheap, but still powerful enough for tasks such as

sports oriented gaming and as we will see training of

. It allows us to train the

model with a batch size of 2996, which is impressive for a

For test, we implemented the model and ran the training

which is a deep learning library for python

We ran the training with

different numbers of epochs in different instances on

purpose, as to see how similar the results of the training

process are between the same number of epochs. We started

out with 500 epochs and the results can be seen in Fig 3.

Nvidia GTX 1050ti -
https://www.geforce.com/hardware/desktop-gpus/geforce-gtx-

40Admir Ferhatovicet al/ Southeast Europe Journal of Soft Computing Vol.

We see that it peaks at an accuracy of over 80% with the

training data. This is of course not the accuracy we are

looking for, but it is impressive considering that this was

done in about 15 minutes with a relatively cheap graphics

card.

Figure 3: Training process over 500 epochs

Imagine doing it with a GPU intended for supervised

learning. It would be done in under a minute, which is

extremely practical and acceptable in modern multi

software systems, which I will talk about again after we

analyze further training instances.

In Fig 4. we can see the process happening over 800 epochs.

As expected, nothing peculiar happens, the model gets more

accurate for the test and train data, with the main importance

being that the model reaches 80% accuracy for the training

data. Still not accurate enough, but still impressive because

it took around 20 minutes.

Figure 4: Training process over 800 epochs

In Fig 5. we see something important happening and that is

overfitting of the model. Training of 1000 epochs was

planned here, but the model started to overfit around 900

epochs. This means that one needs to be careful to not

choose a fixed number of epochs when retraining such

models in practice. The recommendation is to have some

optimal fixed number of epochs, but to continue training in

case of low accuracy, because it can be due to overfitting.

Europe Journal of Soft Computing Vol.9 No.1 March 2020 (37-41)

We see that it peaks at an accuracy of over 80% with the

training data. This is of course not the accuracy we are

r, but it is impressive considering that this was

done in about 15 minutes with a relatively cheap graphics

Training process over 500 epochs

Imagine doing it with a GPU intended for supervised

e done in under a minute, which is

extremely practical and acceptable in modern multi-user

software systems, which I will talk about again after we

In Fig 4. we can see the process happening over 800 epochs.

nothing peculiar happens, the model gets more

accurate for the test and train data, with the main importance

being that the model reaches 80% accuracy for the training

data. Still not accurate enough, but still impressive because

Training process over 800 epochs

we see something important happening and that is

overfitting of the model. Training of 1000 epochs was

planned here, but the model started to overfit around 900

means that one needs to be careful to not

choose a fixed number of epochs when retraining such

models in practice. The recommendation is to have some

optimal fixed number of epochs, but to continue training in

overfitting.

Figure 5: Training process over 1000 epochs

In the last training instance, which can be seen in

training was restarted with a goal of 2000 epochs.

Figure 6: Training process over 2000 epochs

The model reached a 100% accuracy level on the training

data, after 1500 epochs. We can also see that overfitting

happened a couple of times, the most critical happened

about the 1250st epoch, but the model recovers

overfitting.

Now let us talk about the practical implications of the

results. The last training instance took an hour on my

configuration with the GTX 1050ti. Take into consideration

that the model reached 100% accuracy around 1500 epochs

and that we can put a stopping condition in the training

process, let us assume that reaching 100% accuracy on

training data takes about ~45 minutes. This is astonishing

for a GTX 1050ti. The model has an accuracy of 80% on

test data, which is not the best, but is acceptable considering

the lack of data in the dataset used and the size of the model

itself. Now, imagine using such a model in a multi

application, more specifically in an e

application. Whoever has had any experience with e

commerce platforms, knows that they have certain times in a

day, where the number of active users is minimal. This

period usually lasts a couple of hours and is used by

developers to run automatized maintenance tasks.

Training process over 1000 epochs

In the last training instance, which can be seen in Fig 6.the

training was restarted with a goal of 2000 epochs.

Training process over 2000 epochs

The model reached a 100% accuracy level on the training

data, after 1500 epochs. We can also see that overfitting

happened a couple of times, the most critical happened

about the 1250st epoch, but the model recovers quickly from

Now let us talk about the practical implications of the

results. The last training instance took an hour on my

configuration with the GTX 1050ti. Take into consideration

that the model reached 100% accuracy around 1500 epochs

that we can put a stopping condition in the training

process, let us assume that reaching 100% accuracy on

training data takes about ~45 minutes. This is astonishing

for a GTX 1050ti. The model has an accuracy of 80% on

t is acceptable considering

the lack of data in the dataset used and the size of the model

itself. Now, imagine using such a model in a multi-user

application, more specifically in an e-commerce web

application. Whoever has had any experience with e-

ce platforms, knows that they have certain times in a

day, where the number of active users is minimal. This

period usually lasts a couple of hours and is used by

developers to run automatized maintenance tasks.

41Admir Ferhatovicet al/ Southeast Europe Journal of Soft Computing Vol.9 No.1 March 2020 (37-41)

If one would be to use the strategy proposed earlier, which

consists of clusters, all having a model themselves. One

could use the period to retrain clusters which need retraining

to keep their accuracy high. This would cost almost nothing,

because the chance of errors happening is low at the

specified time and retraining models does not result in a

downtime for the e-commerce system.

VI CONCLUSION

In this paper, we showed the dataset and the implementation

of keystroke dynamics in the area of deep learning. LSTM

model is implemented for this purpose using Tensorflow and

Keras libraries. Nvidia GTX 1050ti GPU is used for training

and testing. For further development, the LSTM

performance could be tested over several datasets to validate

the reliability of the obtained results

REFERENCES

 F. Chollet, Deep Learning mit Python und Keras, mitp,

2018.

 F. Monrose and A. Rubin, "Authentication via Keystroke

Dynamics".

 Y. Zhong, Y. Deng and A. K. Jain, Keystroke Dynamics

for User Authentication, 2012.

 Y. Sang, Y. Sang and P. Fan, "Novel Impostors Detection

in Keystroke Dynamics by," Ishikawa, Japan.

 S. Bleha, C. Slivinsky and B. Hussien, Computer-Access

Security Systems, 1990.

 M. Karnana, M. Akila and N. Krishnaraj, "Biometric

personal authentication using keystroke dynamics: A

review," Applied Soft Computing, 2009.

 S. Cho, C. Han, D. H. Han and H.-I. Kim, "Web-Based

Keystroke Dynamics Identity," Journal of Organizational

Computing and, 2014.

 "cs.emu.edu," [Online]. Available:

https://www.cs.cmu.edu/~keystroke/. [Accessed 12

October 2019].

 W. L. S. P. a. S. N. R. Gaines, "Authentication by

Keystroke Timing: some pre-eliminary results," 1980.

 S. P. Banerjee and D. L. Woodard, "Biometric

Authentication and Identification using Keystroke,"

Journal of Pattern Recognition Research 7, pp. 116-139,

212.

 J. Ilonen, "Keystroke dynamics," Lappeenranta University

of Technology, Lappeenranta.

 S. Hochreiter and S. Jürgen, "Long Short-Term Memory,"

MIT Press Journals, 1997.

 J. Brownlee, Long Short-Term Memory Networks With

Python, Machine Learning Mastery.

 "Keras," [Online]. Available: https://keras.io/.

 "TensorFlow," [Online]. Available:

https://www.tensorflow.org/.

 F. Monrose, M. Reiter K. and W. Susanne, Password

hardening based on keystroke dynamics, Springer-Verlag,

2001.

 K. S. Killourhy and R. A. Maxion, Comparing Anomaly-

Detection Algorithms for Keystroke Dynamics, 2009.

 M. S. Obaidat and B. Sadoun, Verification of Computer

Users Using Keystroke Dynamics, 1997.

 R. Giot, M. El-Abed and C. Rosenberger, GREYC

Keystroke: a Benchmark, 2009.

 E. Yu and S. Cho, "Keystroke dynamics identity,"

Computers & Security, 2004.

 J. A. Robinson, V. M. Liang, J. A. M. Chambers and C. L.

MacKenzie, Computer User Verification Using, 1998.

 S. Haider, A. Abbas and A. K. Zaidi, A Multi-Technique

Approach for User Identification through K:eystroke

Dynamics, 2000.

 H. Crawford, Keystroke Dynamics: Characteristics and

Opportunities, University of Glasgow, 2010.

