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1. INTRODUCTION 

In this paper I want to provide a clear overview of a 

keystroke dynamics classifier implementation using long

short-term-memory layers and present an idea about how 

many test samples per person are needed for a secure and 

maintainable system [1]. This way I want to encourage the 

usage of keystroke dynamics as an authentication system in 

everyday applications [2], not to replace the simple 

password system, but to act as a support for it, this way 

maintaining a high level of security without needing the user 

to take additional actions which distract him from his 

everyday tasks [3]. Whether an authentication system should 

use only keystroke dynamics on its own, will be discusse
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later in this paper, after we see the potential accuracy of 
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password is compromised using a keylogger, the attacker 

will either use it directly and type it or get an authentication 

token using a request to an authentication service if it exists. 

Either way, if the service required a typing rhythm vector 

along the password, the account would be secured from this 

kind of attacker [5]. One could argue, if the keylogger 

records all keys typed, it could also record the typing 
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Another use case of keystroke recognition is to protect 

policies from services which forbid account sharing 

Account sharing has been an issue for some time now, and 

nothing has been done to try to counter it. Having users 

typing rhythms would finally help detect if an account is 

being shared and therefore help recognize if a policy is 

being broken. For this purpose, a publicly available dataset 

was used which contains 400 samples of time series vectors 

for 51 users [8]. 

 

 

II LITERATURE REVIEW 

Most literature regarding the topic keystroke dynamics does 

not concern itself with the methods and techniques to 

implement such a system, but more with the necessary proof 

that keystroke dynamics is a valid biometric system that can 

stand its ground. In [2], it is argued that a typing rhythm is a 

behavioral trait instead of being a physiological 

characteristic, making it suitable as a biometric method. In 

[9], results from experiments have been reported that 

support the idea of typing rhythm being a unique behavioral 

pattern for every individual, as several tests have been 

performed and the results were promising. After analyzing 

the data that they collected, they reported a false alarm rate 

of only 5.5%, which is astonishing given the fact that these 

experiments have been performed in 1980. Other literature 

such as [10], concerns itself more with data acquisition and 

the advantages of keystroke dynamics in that regard. Their 

main argument for supporting keystroke dynamics as a 

biometric system is that data can be collected without the 

user being aware or having to perform anything. As users 

are typing, which is the main activity for most people that 

use a computer, their keystroke timings can be automatically 

recorded. Whilst, the paper [11] argues the viability of using 

keystroke dynamics as a system of authentication on its own 

versus using it only for additional verification. The main 

concern of this paper is providing proof of a viable neural 

network approach and its example usage in practice. In [1], 

it is stated that the main weakness of such an approach is 

having to retrain the network when a new user is added, but 

I want to show that this is not a huge burden anymore and 

can be easily overcome with modern technology and smart 

methods.  

 

III DATASET 

As proposed, the most suitable way to represent a typing 

rhythm for a given person would be a, so called time series. 

A time series is simply put, a vector containing time 

measurements of certain actions. In the case of keystroke 

dynamics, the possible actions can be broken down into key 

presses, and smaller components of key presses, and 

transition times between these components. 

Basically, all these actions have some latency between them. 

A latency from action A to action B, therefore. Therefore, 
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Basically, all these actions have some latency between them. 

A latency from action A to action B, therefore. Therefore, 

we can mark these latency using letters correspon

actions, in this example A and B, to form a digraph AB. 

Having a classification of possible actions into digraphs 

makes our work easier when recording and reading latencies 

from existing datasets.  

In most research the following actions are differe

with their corresponding digraph symbols. We have the 

Key-Up timing (KU) which represents the time a key is 

being released and we have Key-Down timing (

represents the time a key is being pressed. Next is 
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necessary latencies. We can also derive other latencies from 

these such as Press-Press (PP) time between two key 

presses, Release-Release (RR) time between two key 

releases and Release-Press (RP) the time between the last 

key release and new key press. 

Now that we cleared that our input is in the form of a simple 

vector containing floating point numbers, let us talk about its 

use in neural networks and its difficulties. Having a ve

as input is probably the dream of anyone who ever put their 

hands onto data science. It is the lowest level and purest 

form an input can have. Usually, the hardest part is 

transforming your input into an input that resembles 

numbers, but here we already have that. Here it is clear, that 

keystroke dynamics as a form of biometrics is perfectly 

suited as a problem which can be solved using AI methods, 

ranging from techniques like SVMs to neural networks. 

Now, the only shortcoming is that depending on the 

password or text that users write the input vector is 

obviously different in length. But this is only a mild problem 

because there are simple techniques to overcome it like 

zero-padding, RNN layers and recursive NNs.

The dataset used throughout this paper 

https://www.cs.cmu.edu/~keystroke/

subjects with 400 time series per subject. All subjects used 

the same password (.tie5Roanl). For each key 

timing is recorded in seconds. Also, for each key transition 

two times are recorded, the keydown

keyup-keydown time. Each record also has a session index 

which differentiates during which session a record was 

made. So, in total there are 31 input attributes and 51 

possible outputs. 

Figure 1: Example of dataset records

In Fig 1. we can see different records containing the subject 

number, the session number, the repetition number and 

digraphs for Hold Time (H) of period (.), Key

of period, Key-Up (UD) of period and Hold, Down time of 

T (t). 
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IV METHODS 

There exists a variety of methods that can be used to 

implement classification of users through typing rhythms. 

One of the more successful ones is the usage of a Support 

Vector Machine, as in [4]. But the obvious shortcoming is 

that given N users, you need N support vectors to classify 

each time series. I am in favor of using neural networks, but 

as mentioned before neural networks also have a similar 

shortcoming. Once you train your neural network for a fixed 

number of possible users (possible outputs), you need to 

retrain it once another user is added. In this paper, I want to 

show that this is nothing, but a small hindrance with modern 

hardware and a creative approach, but first let us talk about 

the obvious advantage of neural networks in comparison to 

SVMs, neural networks have a fixed sized input, therefore 

they scale better.  

They scale better only if you keep being smart about it. 

Adding users adds also outputs to the neural network, which 

increases the training cost, it takes longer to train it to a high 

percentage accuracy. Ironically, the idea to handle this 

comes as an analogy from SVMs. With SVM you keep 

adding support vectors for each possible class, in our case 

each new user.  

To leverage the advantage of a neural network, the idea is to 

separate users into clusters of some fixed size and have a 

separate neural network for each cluster. The cluster size 

should be determined by the cost needed of retraining. One 

could say a compromise. But, after a cluster is full of users, 

it never needs to be retrained again and is in its final form, 

as each new user will be assigned to a cluster that has not 

reached its maximum size. In the use case of authentication, 

what allows for this to be efficient, is the fact that at user 

authentication we know beforehand as which user the person 

is authenticating so we can select the appropriate cluster and 

determine if the user is the user or is an imposter. Of course, 

we would like to know who the imposter is, but in case of 

authentication it is not a priority and can be determined at a 

later point, after the input is ran through all clusters. And of 

course, with more powerful resources, recognizing a person 

by keystroke dynamics is not a problem for a clustered 

system as the input can be ran concurrently through all 

clusters. 

Now as for the details of what type of neural network and 

what layers to use.For a problem where the input i

format of a time-series vector, using a Long short

Memory model comes as a natural choice. [12]

part is to determine the number of layers and memory cells 

per layer in our model. Considering our small sam

we need to constrict ourselves to as few layers as possible. 

In the model I implemented I used one LSTM layer for 

input, two LSTM layers as hidden layers and a dense 51 

output layer. After testing, 100 memory cells per LSTM 

layer seems optimal for our sample size. The number 100 is 

calculated using a formula found in [13]. The model can be 

seen in Fig 2. 
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Figure 2: Visual representation of the model

 

V RESULTS 

Let us talk about the goals of the tests and the hardware used 

for training. The goal of the tests is to show that it is not 

expensive anymore to train and retrain neural network 

models. When I say expensive, I am talking about the 

computational cost and the most important cost of all which 

is time needed to retrain a model.  

Showing this, I hope to make usage of such models a routine 

in software development.  Now about the other important 

cost, which is hardware. I did the training on a Nvidia GTX 

1050ti1. For those unaccustomed with graphics card, this is a 

graphics card in the lower end of the user spectrum and 

therefore cheap, but still powerful enough for tasks such as 

e-sports oriented gaming and as we will see training of 

simpler neural network models. It allows us to train the 

model with a batch size of 2996, which is impressive for a 

cheaper graphics card. 

For test, we implemented the model and ran the training 

using Keras[14], which is a deep learning library for python 

running on TensforFlow [15]. [1] We ran the training with 

different numbers of epochs in different instances on 

purpose, as to see how similar the results 

process are between the same number of epochs. We started 

out with 500 epochs and the results can be seen in 

                                               
1
 Nvidia GTX 1050ti 

https://www.geforce.com/hardware/desktop

1050-ti/specifications 
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which is a deep learning library for python 

We ran the training with 

different numbers of epochs in different instances on 

purpose, as to see how similar the results of the training 

process are between the same number of epochs. We started 

out with 500 epochs and the results can be seen in Fig 3. 

        

Nvidia GTX 1050ti -
https://www.geforce.com/hardware/desktop-gpus/geforce-gtx-
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We see that it peaks at an accuracy of over 80% with the 

training data. This is of course not the accuracy we are 

looking for, but it is impressive considering that this was 

done in about 15 minutes with a relatively cheap graphics 

card. 

Figure 3: Training process over 500 epochs

Imagine doing it with a GPU intended for supervised 

learning. It would be done in under a minute, which is 

extremely practical and acceptable in modern multi

software systems, which I will talk about again after we 

analyze further training instances. 

In Fig 4. we can see the process happening over 800 epochs. 

As expected, nothing peculiar happens, the model gets more 

accurate for the test and train data, with the main importance 

being that the model reaches 80% accuracy for the training 

data. Still not accurate enough, but still impressive because 

it took around 20 minutes. 

Figure 4: Training process over 800 epochs

In Fig 5. we see something important happening and that is 

overfitting of the model. Training of 1000 epochs was 

planned here, but the model started to overfit around 900 

epochs. This means that one needs to be careful to not 

choose a fixed number of epochs when retraining such 

models in practice. The recommendation is to have some 

optimal fixed number of epochs, but to continue training in 

case of low accuracy, because it can be due to overfitting.
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In the last training instance, which can be seen in 

training was restarted with a goal of 2000 epochs.

Figure 6: Training process over 2000 epochs

The model reached a 100% accuracy level on the training 

data, after 1500 epochs. We can also see that overfitting 

happened a couple of times, the most critical happened 

about the 1250st epoch, but the model recovers 

overfitting. 

Now let us talk about the practical implications of the 

results. The last training instance took an hour on my 

configuration with the GTX 1050ti. Take into consideration 

that the model reached 100% accuracy around 1500 epochs 

and that we can put a stopping condition in the training 

process, let us assume that reaching 100% accuracy on 

training data takes about ~45 minutes. This is astonishing 

for a GTX 1050ti. The model has an accuracy of 80% on 

test data, which is not the best, but is acceptable considering 

the lack of data in the dataset used and the size of the model 

itself. Now, imagine using such a model in a multi

application, more specifically in an e

application. Whoever has had any experience with e

commerce platforms, knows that they have certain times in a 

day, where the number of active users is minimal. This 

period usually lasts a couple of hours and is used by 

developers to run automatized maintenance tasks. 
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Training process over 2000 epochs 

The model reached a 100% accuracy level on the training 

data, after 1500 epochs. We can also see that overfitting 

happened a couple of times, the most critical happened 

about the 1250st epoch, but the model recovers quickly from 

Now let us talk about the practical implications of the 

results. The last training instance took an hour on my 

configuration with the GTX 1050ti. Take into consideration 

that the model reached 100% accuracy around 1500 epochs 

that we can put a stopping condition in the training 

process, let us assume that reaching 100% accuracy on 

training data takes about ~45 minutes. This is astonishing 

for a GTX 1050ti. The model has an accuracy of 80% on 

t is acceptable considering 

the lack of data in the dataset used and the size of the model 

itself. Now, imagine using such a model in a multi-user 

application, more specifically in an e-commerce web 

application. Whoever has had any experience with e-

ce platforms, knows that they have certain times in a 

day, where the number of active users is minimal. This 

period usually lasts a couple of hours and is used by 

developers to run automatized maintenance tasks.  
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If one would be to use the strategy proposed earlier, which 

consists of clusters, all having a model themselves. One 

could use the period to retrain clusters which need retraining 

to keep their accuracy high. This would cost almost nothing, 

because the chance of errors happening is low at the 

specified time and retraining models does not result in a 

downtime for the e-commerce system. 

 

VI CONCLUSION 

In this paper, we showed the dataset and the implementation 

of keystroke dynamics in the area of deep learning. LSTM 

model is implemented for this purpose using Tensorflow and 

Keras libraries. Nvidia GTX 1050ti GPU is used for training 

and testing. For further development, the LSTM 

performance could be tested over several datasets to validate 

the reliability of the obtained results 
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