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Abstract 
The mystery of the relation between amino acid sequences and folding of 
the proteins started to fascinate researchers starting from 1960’ies. When 
three-dimensional structures of globular proteins were first obtained by 
X-ray crystallography, there was no obvious relation foundbetween amino 
acid sequence and conformation. The ability of globular proteins refold 
from their denatured, time-random coils in the absence of other biological 
material, led some scientists to believe in that all the information for the 
native, biologically active conformation is contained within the amino 
acid sequence. In 1970’ies Anfinsen postulated that the native structure of 
a protein depends only on the amino acid sequence and on the conditions 
of solution, and not on the kinetic folding pathway. During that decade 
protein folding code was seen as a sum of many small interactions. But 
the key idea was that the primary sequence encoded secondary structures, 
which then encoded tertiary structures. In this article the claim that 
primary sequence encodes the secondary structure will be tested by the 
propensity of amino acids to helix-sheet-coil conformations. 

 

 
 

1. INTRODUCTION  

Genetic variation of protein coding genes is one of the 
main components of genetic diversity. Too many studies 
have been done in order to understand how proteins evolve 
and gain different functions by amino acid substitutions. 
Mostly two approaches have been applied to study the 
pattern of amino acid substitutions: empirical and 
parametric. First one is based on the comparative analysis 
of amino acid sequences (Dayhoff and Barker 1972; 
Dayhoff, Schwartz, and Orcutt 1978; Dayhoff, Barker, and 
Hunt 1983). The second,with the objective of building a 
realistic model of amino acid substitutions, is initialized by 
studies on the relationship between amino acid 
dissimilarities and substitution patterns (Zuckerkandl and 
Pauling 1965; Sneath 1966; Epstein 1967; Clarke 1970; 

Grantham 1974; Miyata, Miyazawa, and Yasunaga 1979; 
Kimura 1983; Xia and Li 1998). 

Although the reverse is supported by observations, both of 
these two approaches assume that amino acid substitutions 
at different amino acid sites are independent of each other. 
It is problematic because function of protein directly 
depends on its three dimensional structure and amino acids 
in a peptide cannot be thought independent form each 
other in order to have particular protein conformation.  

Tendency of each amino acid being in a certain secondary 
structure varies among amino acids. Using a bunch of 
proteins at hand, Ala and Glu are considered as wellα-
helix formers, whereasGly and Pro tend to disrupt the α-
helix structure. Similarly,Glu and Pro are poor β-sheet 
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formers, whereas Ile and Val are good (Chou and Fasman 
1974a, 1978b; Branden and Tooze 1998).  According to 
outcomes of those empirical studies, conformational 
parameters have been proposed to predict secondary 
structure of proteins (Chou and Fasman 1978a).Chou-
Fasman conformational parameters were driven from a 
data set containing low number of proteins. However, now 
PDB database contains around 100,000 protein with 
known structures so that study of Chou-Fasman should be 
renewed.  We aim to update results of the propensity of the 
20 amino acids found in helices, sheets and coils based on 
enlarged datasets.  

Understanding neighboring effect of amino acids can give 
idea about amino acid dissimilarities.  Grantham’s distance 
and Miyata’s distance are two indices of amino acid 
dissimilarity which are based on the volume, the polarity, 
and the chemical property of the side chain, and first two 
amino acid properties, respectively (Grantham 1974; 
Miyata, Miyazawa, and Yasunaga 1979),.  

Even though, 134 properties of amino acids were listed 
(Sneath1966), 10 of them were studied in detail (Xia and 
Li 1998. 10 amino acid properties, the chemical  
composition of the side chain, two polarity measures, 
hydropathy, isoelectric point, volume, aromaticity, 
aliphaticity, hydrogenation, and hydroxythiolation, have 
been shown to affect on the evolution of the genetic code, 
the amino acid composition of proteins, and the pattern of 
nonsynonymous substitutions. Which amino acid 
properties should be applied to prepare an index of amino 
acid dissimilarity remained as an essential question? Both 
Grantham’s and Miyata’s distances were constructed 
arbitrary.  It may cause the rise of old controversies among 
scientists (Kimura 1983; Gillespie 1991). Kimura 
proposed that nonsynonymous substitutions occur between 
similar amino acids and increasing dissimilarity between 
amino acids cause the decrease ofthe substitution rate. 
Whereas,Gillespie proposed that the most frequent 
nonsynonymous substitutions were not between the 
chemically most similar amino acids, but instead were 
between amino acids with a Miyata’s distance near 1. 
However, amino acids with aMiyata’s distance near 1 may 
be actually more similar to each other but, because 
inappropriate choice of amino acid properties they were 
considered as dissimilar.  

XuhuaXia, and ZhengXie (Xia, and Xie 2002) concluded 
that amino acids interact with neighboring amino acids, to 
generate protein structures. They studied the pattern of 
association and repulsion of amino acids based on 24,748 
protein-coding genes from human, 11,321 from mouse, 
and 15,028 from Escherichia coli, and documented the 
pattern of neighbor preference of aminoacids. They have 
found that all amino acids have different preferences for 
neighbors. They also analyzed 7,342 proteins with 
knownsecondary structure and estimated the propensity of 
the 20 amino acids occurring in three of the major 
secondarystructures, i.e., helices, sheets, and turns. They 
claim that in spite of the existence of a number of 
intriguing association andrepulsion patterns, much of the 

neighbor preference can be explained by the propensity 
ofthe amino acids in forming different secondary 
structures.   

Theyfurther observed that amino acids having similar 
setsof neighbors substituting each other more frequently 
than those having very different sets of neighbors. Based 
on those findings, they concluded that the similarity in 
neighbor preference among amino acids is significantly 
correlated with thenumber of amino acid substitutions in 
both mitochondrial and nuclear genes 

One of the three aims of this paper is to generate an 
updated propensity table of the 20 amino acids occurring 
in the three groups of secondary structure elements: 
helices, sheets, and coils, by using high number of know 
protein structures. The second aim is to estimate the 
genomic pattern of neighbor preference for the 20 amino 
acids by the huge amount of available protein data and 
interpret the neighbor preference with reference to protein 
secondary structures. The third is to incorporate the 
differences in neighbor preference between amino acids 
into a new formulation of amino acid dissimilarity index. 

 

2. HISTORICAL BACKGROUND  

For five decades, it has been believed that protein function, 
regulation, and interactions can be learned from their 
structure (Chou et. al 2009; Chou, 2004), which motivates 
development of novel methods for the prediction of the 
protein structure. These predictions concern various levels 
and aspects of the protein structure including the tertiary 
structure (Bujnicki, 2006; Floudas, 2007), solvent 
accessibility, depth, flexibility and packing of residues 
(Kurgan, et. al. 2008), and secondary structure (Rost 2003; 
Dehzangi et. al. 2014).   

In contrast to the tertiary structure that describes position 
of each of the protein’s atoms, the secondary structure 
simplifies the protein structure to a set of spatially local 
folding patterns that include a-helices, b-strands and coils. 
The spatial distribution of these local patterns determines 
the overall, three-dimensional shape of proteins in which 
individual secondary structures interact with each other 
creating more complex structures such as parallel or 
antiparallel β-sheets, β-barrels, and others. In spite that 
final product is complex, protein structures can be 
categorized into a few structural classes depending on the 
amount, types and spatial distribution of the secondary 
structures found in their fold. 

 

3. CHOU-FASMAN CONFORMATIONAL 
PARAMETERS 

Using the criteria described in (Chou and Fasman 1978a) 
for the four conformational states, they delineated the 
number of amino acids in the α, β, coil,andβ-turn regions 
of 29 proteins (Chou, and Fasman,1978b). The average 
frequency for helices, β-sheets, and β-turns were 
respectively 
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〈𝑓α〉 = 0.38, 〈𝑓𝛽〉 =  0.20, 𝑎𝑛𝑑 〈𝑓𝑡〉 =  0.32.                 (1) 

When the frequency of residuesin the α, β, and β-turn 
regions are divided by their respective averagefrequency, 
their conformational parameters are obtained:  
𝑃𝛼 =  〈𝑓α〉/〈𝑓α〉,𝑃𝛽 =  𝑓𝛽/〈𝑓𝛽〉, 𝑎𝑛𝑑 𝑃𝑡 =  𝑓𝑡/〈𝑓𝑡〉.         (2) 
These conformational potentials areshown in Table 1. 
 

Table 1 Conformational parameters for α-helical, β-sheet, 
and β-turn residues in 29 proteins (simplified from Chou 
and Fasman 1978b). 

 
 

It shouldbe noted that all five charged residues (Arg, Asp, 
Gln, His, Lys) are unfavorable for β formation with Pβ< 
1.00, while three of them (Asp, His, and Arg) are helical 
indifferentwith Pα≅ 1.00. On the other hand, a-breaking 
residues (Pro, Gly, and Asn)are strong β-turn formers with 
Pt> 1.50, while β-formers are generallyfound infrequently 
in bend regions. 
After forty years, using all proteins of the PDB database 
we modify this table as follows. 

 

 

 

 

Table 2 Conformational parameters for α-helical, β-sheet, 
and β-turn calculated from 2,066,0981residues in 80,592 
proteins. 

 
 

Dramatic changes observed in  

Glu: 𝑃𝛼: 1.51 → 0.42, Met: 𝑃𝛼: 1.45 → 0.53,  
Cys: 𝑃𝛼: 0.70 → 0.23, Trp: 𝑃𝛽: 1.37 → 0.38,  
Cys: 𝑃𝛽: 1.19 → 0.40, Met: 𝑃𝛽: 1.05 → 0.43,  
Asn: 𝑃𝑡: 1.56 → 0.66, Gly: 𝑃𝑡: 1.56 → 0.71,  
Pro: 𝑃𝑡: 1.52 → 0.49,        Cys: 𝑃𝑡: 1.19 → 0.23. 
 
 
4. XIA, AND XIE PROBABILITIES OF AMINO ACIDS 
OCCURRING IN HELICES, SHEETS, AND COILS 
Xia, and Xie 2002 retrieved 7, 342 proteins with known 
structures from the PDB database (Berman et al. 2000), 
extracted helices, sheets, and coils according to the PDB 
Format Description, Version 2.2, and counted the 
frequency distribution of amino acids in each of the three 
structure categories.  
 
 
 
 
 
 

AA Pa AA Pb AA Pt
Glu 1.51 Val 1.7 Asn 1.56
Met 1.45 Ile 1.6 Gly 1.56
Ala 1.42 Tyr 1.47 Pro 1.52
Leu 1.21 Phe 1.38 Asp 1.46
Lys 1.16 Trp 1.37 Ser 1.43
Phe 1.13 Leu 1.3 Cys 1.19
Gln 1.11 Cys 1.19 Tyr 1.14
Trp 1.08 Thr 1.19 Lys 1.01
Ile 1.08 Gln 1.1 Gln 0.98
Val 1.06 Met 1.05 Thr 0.96
Asp 1.01 Arg 0.93 Trp 0.96
His 1. Asn 0.89 Arg 0.95
Arg 0.98 His 0.87 His 0.95
Thr 0.83 Ala 0.83 Glu 0.74
Ser 0.77 Ser 0.75 Ala 0.66
Cys 0.7 Gly 0.75 Met 0.6
Tyr 0.69 Lys 0.74 Phe 0.6
Asn 0.67 Pro 0.54 Leu 0.59
Pro 0.57 Asp 0.55 Val 0.5
Gly 0.57 Glu 0.37 Ile 0.47

AA Pa AA Pb AA Pt
Leu 2.38 Val 2.62 Leu 2.38
Ala 2.21 Leu 2.08 Ala 2.21
His 1.79 Ile 1.87 His 1.79
Lys 1.32 Thr 1.39 Lys 1.32
Val 1.24 Ala 1.22 Val 1.24
Ile 1.2 Phe 1.14 Ile 1.2
Arg 1.18 Ser 1.1 Arg 1.18
Asp 1.01 Tyr 1.05 Asp 1.01
Ser 0.99 Lys 0.96 Ser 0.99
Gln 0.94 Gly 0.94 Gln 0.94
Thr 0.84 His 0.9 Thr 0.84
Phe 0.82 Arg 0.88 Phe 0.82
Gly 0.71 Asp 0.63 Gly 0.71
Tyr 0.68 Gln 0.6 Tyr 0.68
Asn 0.66 Asu 0.54 Asn 0.66
Met 0.53 Glu 0.46 Met 0.53
Pro 0.49 Met 0.43 Pro 0.49
Glu 0.42 Pro 0.4 Glu 0.42
Trp 0.31 Cys 0.4 Trp 0.31
Cys 0.23 Trp 0.38 Cys 0.23
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Table 3 Frequency distribution of amino acids in helices, 

sheets, computed from Xia, and Xie 2002

 
 
 
Today at PDB database there around 200,000 proteins with 
predicted secondary structure. We eliminated duplications, 
and short proteins of length less than 30 residues. In Table 
2we listed the probabilities of amino acids to be in α-
helical, β-sheet, and β-turn conformations calculated from 
20,660,981residues in 80,592 proteins.The comparison of 
probabilities in Table 1, and Table 2, dramatic changes is 
observed in many amino acids and conformations. 
 
 
 
 
 
 
 
 
 
 
 

Table 4Probabilities of amino acids to reside in α-helical, 
β-sheet, and β-turn conformations calculated from 
20,660,981residues in 80,592 proteins. 
 

 

 
 
When table is normalized column wise, the distribution of 
conformal states along amino acids are obtained. Table 3 
shows these probabilities. For example the probabilities in 
the first column, are probabilities of helix conformations 
being at a certain amino acid. 
 
 
 
 
 
 
 
 
 
 
 
 
 

amino H S C
Ala 0.62 0.2 0.18
Arg 0.7 0.28 0.02
Asu 0.66 0.3 0.04
Asp 0.68 0.27 0.04
Cys 0.53 0.45 0.03
Gln 0.7 0.28 0.02
Glu 0.73 0.25 0.02
Gly 0.56 0.38 0.06
His 0.6 0.37 0.03
Ile 0.53 0.46 0.01
Leu 0.67 0.32 0.02
Lys 0.7 0.28 0.02
Met 0.67 0.3 0.02
Phe 0.58 0.41 0.01
Pro 0.59 0.35 0.06
Ser 0.6 0.37 0.04
Thr 0.54 0.42 0.03
Trp 0.58 0.4 0.02
Tyr 0.56 0.42 0.02
Val 0.51 0.48 0.01

amino H S C
Ala 0.48 0.18 0.34
Arrg 0.4 0.22 0.38
Asu 0.26 0.15 0.59
Asp 0.31 0.13 0.56
Cys 0.26 0.32 0.42
Gln 0.42 0.2 0.38
Glu 0.31 0.24 0.45
Gly 0.16 0.16 0.68
His 0.47 0.17 0.36
Ile 0.34 0.41 0.25
Leu 0.43 0.28 0.29
Lys 0.39 0.2 0.41
Met 0.42 0.26 0.33
Phe 0.33 0.35 0.32
Pro 0.18 0.1 0.72
Ser 0.27 0.21 0.52
Thr 0.24 0.3 0.45
Trp 0.35 0.34 0.32
Tyr 0.32 0.35 0.33
Val 0.29 0.44 0.26
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Table 5 Probabilities of conformations being at a given 
amino acid. 

 
 
 
Xia, and Xiein (Xia, and Xie, 2002) also calculated 
propensities of amino acids occurring in one of the three 
structure categories. They do this as follows: Let NTot be 
the total number of amino acids in the three structure 
categories; Ni (where i = 1, 2, . . . , 20 corresponding to the 
20 amino acids) be the number of amino acid i found in all 
three structure categories; Nh, Ns, and Nt be the number of 
amino acids found in helices, sheets, and coils, 
respectively; and Nh,i, Ns,i, and Nt,ibe the number of amino 
acids in helices, sheets, and coils, respectively. If amino 
acids occur equally likely in the three secondary structures, 
then the expected numbers of Nh,i, Ns,i, and Nt,iare, 
respectively, 
 
𝐸�𝑁ℎ,𝑖� = 𝑁ℎ𝑁𝑖

𝑁𝑇𝑜𝑡
,𝐸�𝑁𝑠,𝑖� = 𝑁𝑠𝑁𝑖

𝑁𝑇𝑜𝑡
,𝐸�𝑁𝑡,𝑖� = 𝑁𝑡𝑁𝑖

𝑁𝑇𝑜𝑡
             (3) 

 
The propensity of amino acid i occurring in helices is 
defined as 
 

𝑃ℎ,𝑖 = 𝑁ℎ,𝑖−𝐸�𝑁ℎ,𝑖�
𝑁𝑖

,𝑃𝑠,𝑖 = 𝑁𝑠,𝑖−𝐸�𝑁𝑠,𝑖�
𝑁𝑖

,𝑃𝑡,𝑖 = 𝑁𝑡,𝑖−𝐸�𝑁𝑡,𝑖�
𝑁𝑖

     (4) 
 
 

Ph,i measures how strongly an amino acid is associated 
with one particular secondary structure and is independent 
of sample size. Xia, and Xiein (Xia, and Xie, 2002) 
retrieved only 7,342 proteins instead of all proteins in the 
PDB database.They claimed thatPh,i, Ps,i, and Pt,i values 
would be stabilized after analyzing just 3,000 protein 
structures.  However our research proved the reverse.  
 
Table 6 Propensities of the amino acids to occur in 
secondary structures. In this Table, Ph and Ps are strongly 
and negatively correlated. 
 

 
 
However the propensity calculations obtained from the 
largest database available, 20,660,981residues in 80,592 
proteins showed that the symmetry in the above table 
cannot be generalized.In Table 5we depicted the 
propensities of amino acids calculated through (3-4). 
Comparing probabilities in Table 4, and Table 5, dramatic 
changes is observed in many amino acids and 
conformations. 
 
 
 
 
 
 
 
 

amino H S C
Ala 0.12 0.06 0.07
Arrg 0.06 0.04 0.04
Asu 0.03 0.03 0.06
Asp 0.05 0.03 0.08
Cys 0.01 0.02 0.02
Gln 0.05 0.03 0.03
Glu 0.02 0.02 0.02
Gly 0.04 0.05 0.12
His 0.09 0.04 0.05
Ile 0.06 0.09 0.03
Leu 0.11 0.1 0.06
Lys 0.07 0.05 0.06
Met 0.02 0.02 0.01
Phe 0.04 0.06 0.03
Pro 0.02 0.02 0.08
Ser 0.05 0.06 0.08
Thr 0.04 0.07 0.06
Trp 0.02 0.02 0.01
Tyr 0.04 0.05 0.03
Val 0.06 0.13 0.04

aa PH PS PC
Ala 0.1046 0.1001 0.0044
Arrg 0.0727 0.0643 0.0085
Asu 0.0257 0.0439 0.0181
Asp 0.0532 0.0699 0.0167
Cys 0.105 0.1025 0.0025
Gln 0.0727 0.0675 0.0053
Glu 0.0984 0.0942 0.0041
Gly 0.0686 0.0335 0.0351
His 0.0315 0.0312 0.0003
Ile 0.1006 0.1142 0.0136
Leu 0.038 0.0272 0.0108
Lys 0.0637 0.0616 0.0021
Met 0.0427 0.038 0.0047
Phe 0.0554 0.0668 0.0114
Pro 0.038 0.0041 0.0338
Ser 0.033 0.0227 0.0104
Thr 0.0866 0.0817 0.0049
Trp 0.0506 0.0579 0.0074
Tyr 0.0741 0.0806 0.0065
Val 0.1228 0.1343 0.0115
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Table 7 Propensities of the amino acids to occur in 
secondary structures obtained from 20,660,981residues. In 
this Table, strong and negative correlation of the Ph and 
Psvaluesare not observed. 
 

 
 
5. NEIGHBOR PREFERENCE IN AMINO ACIDS 

 There are 400 possible amino acid doublets, with 20 
amino acids. Let 𝑁𝑖𝑗 , 𝑖, 𝑗 = 1, 2, . 20 corresponding to the 
20 amino acids be the number of amino acid pairs, with 
amino acid j following amino acid i. For example, NAla,Arg 
is the number of Ala-Arg pairs in all sequences; NArg,Ala is 
the number of Arg-Ala pairs in all sequences, and so on.  
The Nij values apparently depend on amino acid usage. If 
amino acid j is very abundant, then obviously Nij and Nji 
will be large, too. If amino acid i does not have any 
neighbor preference, then the expected value for Nij is 
 
𝐸�𝑁𝑖𝑗� = 𝑃𝑗 ∑ 𝑁𝑖𝑗20

𝑗=1 (5) 
 
wherePj is the frequency of amino acid j. It seems that 
certain amino acids to be neighbors more likely than 
expected from random association. For instance, good α-
helix formers should be more likely to be neighbors, as 
should β-sheet formers. 
 
Whether the 20 Nij values for amino acid i deviate 
significantly from the expectation of random association 
can be tested by a chi-square goodness-of-fit test with 
 

𝜒𝑖2 = ∑
�𝑁𝑖𝑗−𝐸�𝑁𝑖𝑗��

2

𝐸�𝑁𝑖𝑗�
20
𝑗=1                                                 (6) 

 
The degree of freedom associated with 𝜒2 is 19. SincePj is 
not calculated from the 20 Nij values𝜒2 calculated as 19 
rather than 18. The strength of the neighbor preference can 
be measured with following formula: 

𝑆𝑃𝑖 = �𝜒𝑖2/∑ 𝑁𝑖𝑗20
𝑗=1                                  (7) 

Since x2value depends on the sample size we should avoid 
to use x2directly for measuring the strength of preference. 
A more abundant amino acid tends to yield a large x2 value 
than a less abundant amino acid. In contrast, SPi is 
independent of sample size and can therefore facilitate 
comparisons among amino acids. SPicannot tell about 
amino acid tendency for being in certain position since it 
takes only positive values. Xia, and Xie (Xia, and Xie, 
2000) also use the following index (Iij) to measure the 
preference of amino acid i for amino acid j: 
I𝑖𝑗 = �𝑁𝑖𝑗 − 𝐸�𝑁𝑖𝑗�� /𝐸�𝑁𝑖𝑗�                                         (8) 
Apparently, Iij will be positive if amino acid i has amino 
acid j as its neighbor more frequently than expected, and 
negative if amino acid i has amino acid j as its neighbor 
less frequently than expected.Nij may differ from Nji, i.e., 
amino acid i may have different preferences for amino 
acids that go before it and those that go after it. 
 
Table 8.SPistrength of neighbor preference values from 
Equation (7).𝜒2test shows that, there is significant 
difference between the random, and observed frequencies. 

 

aa PH PS PC
Ala 0.1422 0.0595 0.0827
Arrg 0.0653 0.0206 0.0447
Asu 0.0743 0.0905 0.1648
Asp 0.0267 0.1115 0.1383
Cys 0.0776 0.0789 0.0013
Gln 0.0821 0.0426 0.0395
Glu 0.026 0.0011 0.0249
Gly 0.1722 0.0879 0.2602
His 0.1394 0.0718 0.0676
Ile 0.0107 0.1647 0.1754
Leu 0.101 0.0337 0.1347
Lys 0.0537 0.042 0.0117
Met 0.0826 0.0114 0.094
Phe 0.0017 0.1026 0.1009
Pro 0.1578 0.1412 0.299
Ser 0.0662 0.032 0.0982
Thr 0.0906 0.06 0.0306
Trp 0.0121 0.0934 0.1055
Tyr 0.017 0.1083 0.0913
Val 0.0427 0.2012 0.1585

amino X2 After SPI After SPI Before
Ala 622.521 0.1 0.1079
Arg 300.538 0.0873 0.0759
Asu 368.91 0.1057 0.1066
Asp 473.815 0.1024 0.0979
Cys 96.9579 0.095 0.1162
Gln 244.8 0.0899 0.1026
Glu 23205.2 1.0095 0.9978
Gly 415.732 0.085 0.086
His 728.053 0.1179 0.1204
Ile 203.969 0.0682 0.0901
Leu 511.858 0.0843 0.0638
Lys 407.911 0.0956 0.1106
Met 267.982 0.1189 0.1475
Phe 307.695 0.0993 0.1131
Pro 487.612 0.116 0.1243
Ser 542.727 0.1042 0.125
Thr 486.341 0.1062 0.094
Trp 164.106 0.1263 0.1463
Tyr 341.854 0.1122 0.0985
Val 383.397 0.0846 0.0687
Chi 30551.4 DF19 Prob0.00
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6. RESULTS AND DISCUSSION 

Although seemingly different amino acids have some 
association with particular secondary structures, this 
association is found to be dependent on protein families 
considered. Xia, and Xiein (Xia, and Xie, 2002) observed 
that Ala and Gluare found most frequently in helices, Val, 
Cys, and Ile found most frequently in sheets and Gly and 
Profound most frequently in coils (table 1).  
 
When the propensity investigated a larger data set, it is 
found that at least the positions of Glu, Cys, Gly, and Pro 
changed dramatically:  
 
Glu: 𝑃𝛼: 1.51 → 0.42,       Cys: 𝑃𝛽: 1.19 → 0.40,        
Gly: 𝑃𝑡: 1.56 → 0.71,       Pro: 𝑃𝑡: 1.52 → 0.49.         
 
On the other hand, while in Table 4 propensities of the 
amino acids to occur in secondary structures, Ph and Ps are 
seen strongly and negatively correlated, when database  
enlarged  in Table 5, propensities of the amino acids to 
occur in secondary structures obtained from 
20,660,981residues, strong and negative correlation of the 
Ph and Psvaluesare not observable any more. 
 
Neighbor preference in amino acids prevails in even larger 
databases. For each of the 20 amino acids, the Nij values 
deviate highly significantly from E(Nij) also in 
thelargerdataset, with P = 0.0000.  
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